Bac à sable

cellule 1 cellule 2
cellule 3 cellule 4

texte normal


input boxes;%

beginfig(0)
path p[];
p1 = fullcircle xscaled 30 yscaled 100 rotated 75;
p2 = ((.2,0) .. (.5,.1) .. (.7,.4) .. (.9,.7)
.. (.9,1) .. (.5,1) ..(.3, .7) .. (.3, .4) .. cycle)
scaled 70 shifted (-50,-50);
fill p1 withcolor .5[red, white];
fill p2 withcolor .5[red+green, white];

begingroup
save t,u;
(t1-0, u1) = subpath(0,2) of p1 intersectiontimes p2;
(t2-2, u2) = subpath(2,4) of p1 intersectiontimes p2;
(t3-4, u3) = subpath(4,6) of p1 intersectiontimes p2;
(t4-6, u4) = subpath(6,8) of p1 intersectiontimes p2;

p3 = subpath(t2, t3) of p1
-- subpath(t1, 0) of p1 & subpath(8,t4) of p1
-- cycle;
endgroup;

draw p3;

boxit.line1(btex MetaPost diagram etex);
boxit.line2(btex containing \TeX\ symbols etex);
boxit.line3(btex embedded in etex);
boxit.line4(btex a Wikipedia page etex);

(0,0) = line1.s - line2.n
= line2.s - line3.n
= line3.s - line4.n;

drawoptions(withcolor .5blue);
drawunboxed(line1);
drawoptions(withcolor .5red);
drawunboxed(line2);
drawoptions(withcolor .5green);
drawunboxed(line3);
drawoptions(withcolor .5(red+blue));
drawunboxed(line4);

drawoptions(withcolor .5(blue+green));
draw btex $\int_{-\infty}^{+\infty} e^{-{1\over2}z^2} dz
= \sqrt{2\pi}$ etex
rotated 15
shifted(-30,0);
endfig;



\sqrt{x^2}


for (int i=0; i<99; j++){
	char *k = (char*)malloc(1);
}